CFI CaRE: Hardware-Supported Call and Return Enforcement for Commercial Microcontrollers

نویسندگان

  • Thomas Nyman
  • Jan-Erik Ekberg
  • Lucas Davi
  • N. Asokan
چکیده

With the increasing scale of deployment of Internet of Things (IoT), concerns about IoT security have become more urgent. In particular, memory corruption attacks play a predominant role as they allow remote compromise of IoT devices. Control-flow integrity (CFI) is a promising and generic defense technique against these attacks. However, given the nature of IoT deployments, existing protection mechanisms for traditional computing environments (including CFI) need to be adapted to the IoT setting. In this paper, we describe the challenges of enabling CFI on microcontroller (MCU) based IoT devices. We then present CaRE, the first interrupt-aware CFI scheme for low-end MCUs. CaRE uses a novel way of protecting the CFI metadata by leveraging TrustZone-M security extensions introduced in the ARMv8-M architecture. Its binary instrumentation approach preserves the memory layout of the target MCU software, allowing pre-built bare-metal binary code to be protected by CaRE. We describe our implementation on a Cortex-M Prototyping System and demonstrate that CaRE is secure while imposing acceptable performance and memory impact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Flow Integrity Enforcement with Dynamic Code Optimization

Control Flow Integrity (CFI) is an attractive security property with which most injected and code reuse attacks can be defeated, including advanced attacking techniques like Return-Oriented Programming (ROP). However, comprehensive enforcement of CFI is expensive due to additional supports needed (e.g., compiler support and presence of relocation or debug information) and performance overhead. ...

متن کامل

A Minimalist Hardware Architecture for Using Commercial Microcontrollers in Space

Microcontrollers provide very dense functionality for embedded applications ranging from telephones to automobiles. The acceptance of these devices for space applications has been hindered by their manufacture which often uses multiple semiconductor fabrication techniques and thereby compromises radiation tolerance. If such concerns could be mitigated, microcontrollers would provide a substanti...

متن کامل

Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM

Constraining dynamic control transfers is a common technique for mitigating software vulnerabilities. This defense has been widely and successfully used to protect return addresses and stack data; hence, current attacks instead typically corrupt vtable and function pointers to subvert a forward edge (an indirect jump or call) in the control-flow graph. Forward edges can be protected using Contr...

متن کامل

Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow Integrity Protection

Return-oriented programming (ROP) offers a robust attack technique that has, not surprisingly, been extensively used to exploit bugs in modern software programs (e.g., web browsers and PDF readers). ROP attacks require no code injection, and have already been shown to be powerful enough to bypass fine-grained memory randomization (ASLR) defenses. To counter this ingenious attack strategy, sever...

متن کامل

Opaque Control-Flow Integrity

A new binary software randomization and ControlFlow Integrity (CFI) enforcement system is presented, which is the first to efficiently resist code-reuse attacks launched by informed adversaries who possess full knowledge of the inmemory code layout of victim programs. The defense mitigates a recent wave of implementation disclosure attacks, by which adversaries can exfiltrate in-memory code det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017